Branched chemically modified poly(A) tails enhance the translation capacity of mRNA

Branched chemically modified poly(A) tails enhance the translation capacity of mRNA
  • Sahin, U., Karikó, K. & Türeci, Ö. mRNA-essentially based therapeutics—increasing a brand unusual class of pills. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Weng, Y. et al. The topic and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 40, 107534 (2020).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Rohner, E., Yang, R., Foo, K. S., Goedel, A. & Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Baden, L. R. et al. Efficacy and security of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Walsh, E. E. et al. Security and immunogenicity of two RNA-essentially based COVID-19 vaccine candidates. N. Engl. J. Med. 383, 2439–2450 (2020)

    Article 
    CAS 
    PubMed 

    Google Student 

  • Collén, A. et al. VEGFA mRNA for regenerative therapy of heart failure. Nat. Rev. Drug Discov. 21, seventy nine–80 (2022).

    Article 
    PubMed 

    Google Student 

  • Mullard, A. mRNA-essentially based drug approaches portion I milestone. Nat. Rev. Drug Discov. 15, 595 (2016).

    Article 
    PubMed 

    Google Student 

  • A gawk of VERVE-101 in patients with familial hypercholesterolemia and cardiovascular illness. Clinicaltrials.gov https://clinicaltrials.gov/ct2/designate/NCT05398029?term=verve101&design=2&hostile=1 (2023).

  • Rybakova, Y. et al. mRNA birth for therapeutic anti-HER2 antibody expression in vivo. Mol. Ther. 27, 1415–1423 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene making improvements to for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Ramaswamy, S. et al. Systemic birth of mumble IX messenger RNA for protein change therapy. Proc. Natl Acad. Sci. USA 114, E1941–E1950 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Jiang, L. et al. Twin mRNA therapy restores metabolic characteristic in prolonged-term be taught in mice with propionic acidemia. Nat. Commun. 11, 5339 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article 
    PubMed 

    Google Student 

  • Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-take care of receptors: the influence of nucleoside modification and the evolutionary initiating set up of RNA. Immunity 23, 165–175 (2005).

    Article 
    PubMed 

    Google Student 

  • Kormann, M. S. D. et al. Expression of therapeutic proteins after birth of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154–157 (2011).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Leppek, K. et al. Combinatorial optimization of mRNA construction, stability, and translation for RNA-essentially based therapeutics. Nat. Commun. 13, 1536 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Asrani, K. H. et al. Optimization of mRNA untranslated areas for improved expression of therapeutic mRNA. RNA Biol. 15, 756–762 (2018).

    PubMed 
    PubMed Central 

    Google Student 

  • Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering spherical RNA for potent and right translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Student 

  • Chen, R. et al. Engineering spherical RNA for enhanced protein production. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01393-0 (2022).

  • Schlake, T., Thess, A., Thran, M. & Jordan, I. mRNA as unusual abilities for passive immunotherapy. Cell. Mol. Lifestyles Sci. 76, 301–328 (2019).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Thess, A. et al. Sequence-engineered mRNA with out chemical nucleoside changes enables an efficient protein therapy in big animals. Mol. Ther. 23, 1456–1464 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Koch, A., Aguilera, L., Morisaki, T., Munsky, B. & Stasevich, T. J. Quantifying the dynamics of IRES and cap translation with single-molecule resolution in reside cells. Nat. Struct. Mol. Biol. 27, 1095–1104 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Bloom, K., van den Berg, F. & Arbuthnot, P. Self-amplifying RNA vaccines for infectious ailments. Gene Ther. 28, 117–129 (2021).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Kahvejian, A., Roy, G. & Sonenberg, N. The mRNA closed-loop mannequin: the characteristic of PABP and PABP-interacting proteins in mRNA translation. Frigid Spring Harb. Symp. Quant. Biol. 66, 293–300 (2001).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Hinnebusch, A. G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83, 779–812 (2014).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Eisen, T. J. et al. The dynamics of cytoplasmic mRNA metabolism. Mol. Cell 77, 786–799.e10 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Wang, Z., Day, N., Trifillis, P. & Kiledjian, M. An mRNA stability complex capabilities with poly(A)-binding protein to stabilize mRNA in vitro. Mol. Cell. Biol. 19, 4552–4560 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Mangus, D. A., Evans, M. C. & Jacobson, A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional withhold watch over of gene expression. Genome Biol. 4, 223 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Student 

  • Bernstein, P., Peltz, S. W. & Ross, J. The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol. Cell. Biol. 9, 659–670 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Aditham, A. et al. Chemically modified mocRNAs for extremely efficient protein expression in mammalian cells. ACS Chem. Biol. 17, 3352–3366 (2022).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Sawazaki, R. et al. Characterization of the multimeric construction of poly(A)-binding protein on a poly(A) tail. Sci. Rep. 8, 1455 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Student 

  • Kühn, U. & Pieler, T. Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction. J. Mol. Biol. 256, 20–30 (1996).

    Article 
    PubMed 

    Google Student 

  • Coombes, C. E. & Boeke, J. D. An outline of detection suggestions for big lariat RNAs. RNA 11, 323–331 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Katolik, A. et al. Regiospecific right-portion synthesis of branched oligoribonucleotides that mimic intronic lariat RNA intermediates. J. Org. Chem. seventy nine, 963–975 (2014).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Escorihuela, J. et al. Train covalent attachment of DNA microarrays by hasty thiol-ene “click on” chemistry. Bioconjug. Chem. 25, 618–627 (2014).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Greenberg, M. M. Attachment of reporter and conjugate groups to the 3′ termini of oligonucleotides. Curr. Protoc. Nucleic Acid Chem. https://doi.org/10.1002/0471142700.nc0405s02 (2001).

  • El-Sagheer, A. H. & Brown, T. Single tube gene synthesis by phosphoramidate chemical ligation. Chem. Commun. Fifty three, 10700–10702 (2017).

    Article 
    CAS 

    Google Student 

  • Kalinowski, M. et al. Phosphoramidate ligation of oligonucleotides in nanoscale constructions. ChemBioChem 17, 1150–1155 (2016).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Ehret, F., Zhou, C. Y., Alexander, S. C., Zhang, D. & Devaraj, N. K. Residing-explicit covalent conjugation of modified mRNA by tRNA guanine transglycosylase. Mol. Pharm. 15, 737–742 (2018).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Zhang, D. et al. Residing-explicit and enzymatic hostile-linking of sgRNA enables wavelength-selectable photoactivated withhold watch over of CRISPR gene making improvements to. J. Am. Chem. Soc. 144, 4487–4495 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Fantoni, N. Z., El-Sagheer, A. H. & Brown, T. A hitchhiker’s manual to click on-chemistry with nucleic acids. Chem. Rev. 121, 7122–7154 (2021).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Warminski, M., Kowalska, J. & Jemielity, J. Trusty-portion synthesis of RNA 5′-azides and their application for labeling, ligation, and cyclization by procedure of click on chemistry. Curr. Protoc. Nucleic Acid Chem. 82, e112 (2020).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Kühn, U. & Wahle, E. Structure and characteristic of poly(A) binding proteins. Biochim. Biophys. Acta 1678, 67–84 (2004).

    Article 
    PubMed 

    Google Student 

  • Deo, R. C., Bonanno, J. B., Sonenberg, N. & Burley, S. K. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98, 835–845 (1999).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Vogel, A. B. et al. BNT162b vaccines shield rhesus macaques from SARS-CoV-2. Nature 592, 283–289 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Student 

  • Gilleron, J. et al. Image-essentially based prognosis of lipid nanoparticle-mediated siRNA birth, intracellular trafficking and endosomal walk. Nat. Biotechnol. 31, 638–646 (2013).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Wang, X. et al. Three-d intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Student 

  • Zeng, H. et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse mannequin of Alzheimer’s illness. Nat. Neurosci. 26, 430–446 (2023).

    CAS 
    PubMed 

    Google Student 

  • Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Xiang, K. & Bartel, D. P. The molecular basis of coupling between poly(A)-tail length and translational effectivity. eLife 10, e66493 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Li, X. et al. Generation of destabilized inexperienced fluorescent protein as a transcription reporter. J. Biol. Chem. 273, 34970–34975 (1998).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Nicholson-Shaw, A. L., Kofman, E. R., Yeo, G. W. & Pasquinelli, A. E. Nuclear and cytoplasmic poly(A) binding proteins (PABPs) decide on distinct transcripts and isoforms. Nucleic Acids Res. 50, 4685–4702 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Perzanowska, O., Smietanski, M., Jemielity, J. & Kowalska, J. Chemically modified poly(A) analogs concentrated on PABP: construction process relationship and translation inhibitory properties. Chemistry 28, e202201115 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Görlach, M., Burd, C. G. & Dreyfuss, G. The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp. Cell. Res. 211, 400–407 (1994).

    Article 
    PubMed 

    Google Student 

  • Schäfer, I. B. et al. Molecular basis for poly(A) RNP architecture and recognition by the Pan2–Pan3 deadenylase. Cell 177, 1619–1631.e21 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Student 

  • Webster, M. W. et al. mRNA deadenylation is coupled to translation rates by the differential actions of Ccr4–Now no longer nucleases. Mol. Cell 70, 1089–1100.e8 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Dehlin, E., Wormington, M., Körner, C. G. & Wahle, E. Cap-dependent deadenylation of mRNA. EMBO J. 19, 1079–1086 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Ruud, K. A., Kuhlow, C., Goss, D. J. & Browning, K. S. Identification and characterization of a unusual cap-binding protein from Arabidopsis thaliana. J. Biol. Chem. 273, 10325–10330 (1998).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Shestakova, E. D., Smirnova, V. V., Shatsky, I. N. & Terenin, I. M. Direct mechanisms of translation initiation in larger eukaryotes: the eIF4G2 memoir. RNA 29, 282–299 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Ho, J. J. D. et al. Systemic reprogramming of translation efficiencies on oxygen stimulus. Cell Rep. 14, 1293–1300 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Moerke, N. J. et al. Little-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128, 257–267 (2007).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Jang, D.-I. et al. The characteristic of tumor necrosis mumble alpha (TNF-α) in autoimmune illness and up-to-the-minute TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 22, 2719 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Giannini, E. G., Testa, R. & Savarino, V. Liver enzyme alteration: a manual for clinicians. CMAJ 172, 367–379 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Student 

  • Kumar, A., Zhang, J. & Yu, F.-S. X. Toll-take care of receptor 3 agonist poly(I:C)-triggered antiviral response in human corneal epithelial cells. Immunology 117, 11–21 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Okahira, S. et al. Interferon-beta induction by Toll-take care of receptor 3 is dependent on double-stranded RNA construction. DNA Cell Biol. 24, 614–623 (2005).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Rothgangl, T. et al. In vivo adenine inappropriate making improvements to of PCSK9 in macaques reduces LDL ldl cholesterol ranges. Nat. Biotechnol. 39, 949–957 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Robson, A. Three diverse therapies to target PCSK9. Nat. Rev. Cardiol. 18, 541 (2021).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Nelson, C. E. et al. Lengthy-term overview of AAV–CRISPR genome making improvements to for Duchenne muscular dystrophy. Nat. Med. 25, 427–432 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Musunuru, K. et al. In vivo CRISPR inappropriate making improvements to of PCSK9 durably lowers ldl cholesterol in primates. Nature 593, 429–434 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Student 

  • Qiu, M. et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-manual RNA achieves liver-explicit in vivo genome making improvements to of Angptl3. Proc. Natl Acad. Sci. USA 118, e2020401118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Zhou, J. et al. Twin sgRNAs facilitate CRISPR/Cas9-mediated mouse genome concentrated on. FEBS J. 281, 1717–1725 (2014).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Park, J. et al. Quick poly(A) tails are gain from deadenylation by the LARP1–PABP complex. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-023-00930-y (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Student 

  • Arevalo, C. P. et al. A multivalent nucleoside-modified mRNA vaccine towards all known influenza virus subtypes. Science 378, 899–904 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Foy, S. P. et al. Non-viral precision T cell receptor change for personalized cell therapy. Nature 615, 687–69 (2023).

  • Dong, Y. et al. DNA functional affords assembled from branched DNA: compose, synthesis, and applications. Chem. Rev. 120, 9420–9481 (2020).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Horn, T., Chang, C. A. & Urdea, M. S. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) to be used as signal amplifiers in nucleic acid quantification assays. Nucleic Acids Res. 25, 4842–4849 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Student 

  • Chen, H. et al. Branched, chemically modified poly(A) tails enhance the translation capacity of mRNA. Sequence Study Archive https://www.ncbi.nlm.nih.gov/sra/PRJNA1072971 (2024).

  • Anzalone, A. V. et al. Programmable deletion, change, integration and inversion of big DNA sequences with twin prime making improvements to. Nat. Biotechnol. 40, 731–740 (2022).

    Article 
    CAS 
    PubMed 

    Google Student 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    You May Also Like